Skip to main content

AI Sales Meeting Transcription: Build a Free Gong Alternative with OpenClaw [2026]

· 9 min read
MarketBetter Team
Content Team, marketbetter.ai

Gong costs $1,200-1,600 per user per year. For a 10-person sales team, that's $12,000-16,000 annually—just for call recording and basic insights.

What if you could get 80% of the value for $50/month?

This guide shows you how to build a sales meeting transcription and analysis system using:

  • OpenClaw for orchestration (free)
  • Whisper for transcription (free or cheap API)
  • Claude for analysis ($0.01-0.05 per call)

The result: automatic meeting summaries, action items, deal intelligence, and CRM sync—without the enterprise price tag.

AI transcribing sales call to meeting notes with CRM sync

What Enterprise Tools Like Gong Actually Do

Before we build a replacement, let's understand what we're replacing:

Gong's Core Features

  1. Call recording — Records Zoom/Teams/phone calls
  2. Transcription — Speech-to-text for the full conversation
  3. Topic detection — Identifies when pricing, competition, etc. come up
  4. Action items — Extracts next steps from calls
  5. Deal intelligence — Tracks deal progression across calls
  6. Coaching insights — Talk ratio, filler words, etc.
  7. CRM sync — Pushes notes to Salesforce/HubSpot

What Actually Matters

Here's the dirty secret: most teams use like 20% of Gong's features. The stuff that actually moves deals:

  • Searchable transcripts
  • Auto-generated summaries
  • Action items pushed to CRM
  • Basic deal tracking

We can build all of that.

Cost comparison: Enterprise tools vs free open source alternative

The Architecture

Here's our stack:

[Zoom/Teams Recording]

[Cloud Storage (S3/GCS)]

[Whisper Transcription]

[Claude Analysis]

┌────┴────┐
↓ ↓
[HubSpot] [Slack Alert]

OpenClaw orchestrates the whole flow—watching for new recordings, processing them, and routing the outputs.

Architecture showing Zoom to Whisper to Claude to CRM workflow

Prerequisites

  • OpenClaw installed (setup guide)
  • Zoom Business plan (for cloud recording) or local recording workflow
  • HubSpot (or your CRM)
  • Anthropic API key
  • Optional: OpenAI API for Whisper (or run locally)

Step 1: Set Up Recording Capture

Option A: Zoom Cloud Recording Webhook

Zoom can automatically upload recordings. Set up a webhook to trigger processing:

// webhooks/zoom.js
const express = require('express');
const { OpenClaw } = require('openclaw');

const app = express();
const openclaw = new OpenClaw();

app.post('/webhooks/zoom', async (req, res) => {
const { event, payload } = req.body;

if (event === 'recording.completed') {
const { download_url, meeting_id, topic, start_time } = payload.object;

// Trigger the transcription pipeline
await openclaw.trigger('meeting-processor', {
recordingUrl: download_url,
meetingId: meeting_id,
title: topic,
timestamp: start_time,
source: 'zoom'
});
}

res.sendStatus(200);
});

app.listen(3000);

Option B: Local Recording Watch Folder

If you record locally, watch a folder for new files:

// watchers/local-recordings.js
const chokidar = require('chokidar');
const { OpenClaw } = require('openclaw');

const openclaw = new OpenClaw();
const RECORDINGS_DIR = '/path/to/recordings';

const watcher = chokidar.watch(RECORDINGS_DIR, {
ignored: /(^|[\/\\])\../,
persistent: true,
awaitWriteFinish: true
});

watcher.on('add', async (filePath) => {
if (filePath.endsWith('.mp4') || filePath.endsWith('.m4a')) {
console.log(`📹 New recording detected: ${filePath}`);

await openclaw.trigger('meeting-processor', {
filePath,
title: path.basename(filePath, path.extname(filePath)),
timestamp: new Date().toISOString(),
source: 'local'
});
}
});

console.log(`👀 Watching ${RECORDINGS_DIR} for new recordings...`);

Step 2: Build the Transcription Pipeline

Using OpenAI Whisper API

// lib/transcribe.js
const fs = require('fs');
const FormData = require('form-data');

async function transcribeAudio(audioPath) {
const form = new FormData();
form.append('file', fs.createReadStream(audioPath));
form.append('model', 'whisper-1');
form.append('response_format', 'verbose_json');
form.append('language', 'en');

const response = await fetch('https://api.openai.com/v1/audio/transcriptions', {
method: 'POST',
headers: {
'Authorization': `Bearer ${process.env.OPENAI_API_KEY}`,
...form.getHeaders()
},
body: form
});

const result = await response.json();

return {
text: result.text,
segments: result.segments, // Includes timestamps
duration: result.duration
};
}

module.exports = { transcribeAudio };

Using Local Whisper (Free, But Slower)

# Install Whisper locally
pip install openai-whisper

# Transcribe
whisper recording.mp4 --model medium --output_format json
// lib/transcribe-local.js
const { exec } = require('child_process');
const util = require('util');
const execAsync = util.promisify(exec);

async function transcribeLocal(audioPath) {
const outputPath = audioPath.replace(/\.[^/.]+$/, '');

await execAsync(
`whisper "${audioPath}" --model medium --output_format json --output_dir /tmp`
);

const transcript = require(`${outputPath}.json`);

return {
text: transcript.text,
segments: transcript.segments,
duration: transcript.segments[transcript.segments.length - 1]?.end || 0
};
}

module.exports = { transcribeLocal };

Step 3: Claude Analysis Agent

Now the magic—Claude reads the transcript and extracts insights:

# agents/meeting-analyzer.yaml
name: MeetingAnalyzer
description: Analyzes sales call transcripts and extracts insights

model: claude-sonnet-4-20250514
temperature: 0.2

system_prompt: |
You are a sales call analyst. Given a meeting transcript, extract:

## OUTPUT FORMAT

### SUMMARY
A 2-3 sentence executive summary of the call.

### KEY DISCUSSION POINTS
Bullet points of main topics covered.

### CUSTOMER PAIN POINTS
Specific problems or challenges mentioned by the prospect.

### BUYING SIGNALS
Any positive indicators (timeline mentioned, budget discussed, stakeholders identified).

### OBJECTIONS/CONCERNS
Any hesitations or pushback from the prospect.

### COMPETITION MENTIONED
Any competitors discussed and context.

### ACTION ITEMS
Specific next steps with owners (format: "[ ] Owner: Action by Date").

### DEAL STAGE RECOMMENDATION
Based on this call, recommended deal stage:
- Discovery
- Qualification
- Demo/Evaluation
- Negotiation
- Closed Won/Lost

### FOLLOW-UP PRIORITY
High / Medium / Low with reasoning.

### COACHING NOTES
Quick notes for the rep (what went well, areas to improve).

## RULES
- Be specific—quote the transcript when relevant
- Don't make up information not in the transcript
- If something is unclear, note it as "unclear from transcript"
- Action items must be actionable and specific
// lib/analyze.js
const Anthropic = require('@anthropic-ai/sdk');

const client = new Anthropic();

async function analyzeTranscript(transcript, metadata) {
const response = await client.messages.create({
model: 'claude-sonnet-4-20250514',
max_tokens: 4000,
messages: [{
role: 'user',
content: `Analyze this sales call transcript.

Meeting: ${metadata.title}
Date: ${metadata.timestamp}
Duration: ${metadata.duration} minutes
Attendees: ${metadata.attendees?.join(', ') || 'Unknown'}

---TRANSCRIPT---
${transcript}
---END TRANSCRIPT---`
}]
});

return parseAnalysis(response.content[0].text);
}

function parseAnalysis(rawAnalysis) {
// Parse the structured output into a JSON object
const sections = {};

const sectionPatterns = [
{ key: 'summary', pattern: /### SUMMARY\n([\s\S]*?)(?=###|$)/ },
{ key: 'keyPoints', pattern: /### KEY DISCUSSION POINTS\n([\s\S]*?)(?=###|$)/ },
{ key: 'painPoints', pattern: /### CUSTOMER PAIN POINTS\n([\s\S]*?)(?=###|$)/ },
{ key: 'buyingSignals', pattern: /### BUYING SIGNALS\n([\s\S]*?)(?=###|$)/ },
{ key: 'objections', pattern: /### OBJECTIONS\/CONCERNS\n([\s\S]*?)(?=###|$)/ },
{ key: 'competition', pattern: /### COMPETITION MENTIONED\n([\s\S]*?)(?=###|$)/ },
{ key: 'actionItems', pattern: /### ACTION ITEMS\n([\s\S]*?)(?=###|$)/ },
{ key: 'dealStage', pattern: /### DEAL STAGE RECOMMENDATION\n([\s\S]*?)(?=###|$)/ },
{ key: 'priority', pattern: /### FOLLOW-UP PRIORITY\n([\s\S]*?)(?=###|$)/ },
{ key: 'coaching', pattern: /### COACHING NOTES\n([\s\S]*?)(?=###|$)/ }
];

sectionPatterns.forEach(({ key, pattern }) => {
const match = rawAnalysis.match(pattern);
sections[key] = match ? match[1].trim() : '';
});

return sections;
}

module.exports = { analyzeTranscript };

Step 4: CRM Integration

Push the analysis to HubSpot:

// lib/crm-sync.js
const HubSpot = require('@hubspot/api-client');

const hubspot = new HubSpot.Client({ accessToken: process.env.HUBSPOT_TOKEN });

async function syncToHubSpot(dealId, analysis, recordingUrl) {
// Create engagement (call note)
const noteBody = `
## Meeting Summary
${analysis.summary}

## Key Points
${analysis.keyPoints}

## Pain Points Identified
${analysis.painPoints}

## Buying Signals
${analysis.buyingSignals}

## Action Items
${analysis.actionItems}

---
🎥 [View Recording](${recordingUrl})
📊 Priority: ${analysis.priority}
🎯 Suggested Stage: ${analysis.dealStage}
`;

// Create note
await hubspot.crm.objects.notes.basicApi.create({
properties: {
hs_note_body: noteBody,
hs_timestamp: Date.now()
},
associations: [{
to: { id: dealId },
types: [{ associationCategory: 'HUBSPOT_DEFINED', associationTypeId: 214 }]
}]
});

// Update deal stage if recommended
const stageMap = {
'Discovery': 'appointmentscheduled',
'Qualification': 'qualifiedtobuy',
'Demo/Evaluation': 'presentationscheduled',
'Negotiation': 'contractsent'
};

const newStage = stageMap[analysis.dealStage.trim()];
if (newStage) {
await hubspot.crm.deals.basicApi.update(dealId, {
properties: { dealstage: newStage }
});
}

// Create tasks for action items
const actionItems = parseActionItems(analysis.actionItems);
for (const item of actionItems) {
await hubspot.crm.objects.tasks.basicApi.create({
properties: {
hs_task_body: item.task,
hs_task_subject: `Follow-up: ${item.task.substring(0, 50)}...`,
hs_task_status: 'NOT_STARTED',
hs_task_priority: analysis.priority.includes('High') ? 'HIGH' : 'MEDIUM',
hs_timestamp: Date.now()
}
});
}
}

function parseActionItems(actionItemsText) {
const items = [];
const lines = actionItemsText.split('\n').filter(l => l.trim().startsWith('[ ]'));

lines.forEach(line => {
const match = line.match(/\[ \] ([^:]+): (.+)/);
if (match) {
items.push({ owner: match[1].trim(), task: match[2].trim() });
}
});

return items;
}

module.exports = { syncToHubSpot };

Step 5: Slack Notifications

Alert the team when calls are processed:

// lib/notify.js
async function sendSlackNotification(channel, analysis, meetingInfo) {
const blocks = [
{
type: 'header',
text: {
type: 'plain_text',
text: `📞 Call Analyzed: ${meetingInfo.title}`
}
},
{
type: 'section',
text: {
type: 'mrkdwn',
text: `*Summary:* ${analysis.summary}`
}
},
{
type: 'section',
fields: [
{
type: 'mrkdwn',
text: `*Priority:* ${analysis.priority.split('\n')[0]}`
},
{
type: 'mrkdwn',
text: `*Stage:* ${analysis.dealStage.split('\n')[0]}`
}
]
},
{
type: 'section',
text: {
type: 'mrkdwn',
text: `*Buying Signals:*\n${analysis.buyingSignals.substring(0, 500)}`
}
},
{
type: 'section',
text: {
type: 'mrkdwn',
text: `*Action Items:*\n${analysis.actionItems.substring(0, 500)}`
}
},
{
type: 'actions',
elements: [
{
type: 'button',
text: { type: 'plain_text', text: '🎥 View Recording' },
url: meetingInfo.recordingUrl
},
{
type: 'button',
text: { type: 'plain_text', text: '📊 View Deal' },
url: `https://app.hubspot.com/contacts/deals/${meetingInfo.dealId}`
}
]
}
];

await fetch(process.env.SLACK_WEBHOOK_URL, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ blocks })
});
}

module.exports = { sendSlackNotification };

Step 6: The Complete Pipeline

Bring it all together in an OpenClaw agent:

# agents/meeting-processor.yaml
name: MeetingProcessor
description: Orchestrates the full meeting analysis pipeline

triggers:
- type: webhook
path: /process-meeting

flow:
- step: download
action: Download recording from URL or copy from local path

- step: transcribe
action: Run Whisper transcription
tool: transcribe_audio

- step: analyze
action: Analyze transcript with Claude
tool: analyze_transcript

- step: find_deal
action: Match meeting to CRM deal based on attendees
tool: find_hubspot_deal

- step: sync_crm
action: Push analysis to HubSpot
tool: sync_to_hubspot

- step: notify
action: Send Slack notification
tool: send_slack_alert

- step: archive
action: Store transcript and analysis
tool: save_to_storage

Cost Comparison

ComponentEnterprise (Gong)DIY Solution
Per-user licensing$1,400/user/year$0
TranscriptionIncluded$0.006/min (Whisper API)
AnalysisIncluded~$0.02/call (Claude)
StorageIncluded~$5/month (S3)
10-user team, 500 calls/month$14,000/year~$600/year

That's 95% cost savings while getting the features that actually matter.

What You Lose vs. Gong

Let's be honest about trade-offs:

You won't have:

  • Native conversation search across all calls
  • Automatic competitor mention alerts
  • Deal boards with call activity
  • Manager dashboards
  • iOS/Android mobile apps
  • SOC 2 / HIPAA compliance out of the box

You will have:

  • Call transcripts and summaries ✓
  • Action items auto-pushed to CRM ✓
  • Deal stage recommendations ✓
  • Slack notifications ✓
  • Basic coaching notes ✓
  • Your data, your infrastructure ✓

For many early-stage teams, that's plenty.

When to Upgrade to Enterprise

This DIY approach is great until:

  • You have 20+ reps needing coaching dashboards
  • Compliance requires certified vendors
  • You need real-time call guidance
  • Leadership wants exec-level reporting

At that point, the $14K/year for Gong or Chorus becomes worth it. But for a 5-10 person sales team? Build it yourself.


Want AI That Tells You What to Do Next?

Meeting transcription is one piece of the puzzle. MarketBetter's AI SDR playbook connects all your signals—calls, emails, website visits, intent data—into a single daily task list for your team.

Book a demo →


Related reading: